A redox-dependent mechanism for regulation of AMPK activation by Thioredoxin1 during energy starvation.

نویسندگان

  • Dan Shao
  • Shin-Ichi Oka
  • Tong Liu
  • Peiyong Zhai
  • Tetsuro Ago
  • Sebastiano Sciarretta
  • Hong Li
  • Junichi Sadoshima
چکیده

5'-AMP-activated protein kinase (AMPK) is a key regulator of metabolism and survival during energy stress. Dysregulation of AMPK is strongly associated with oxidative-stress-related disease. However, whether and how AMPK is regulated by intracellular redox status remains unknown. Here we show that the activity of AMPK is negatively regulated by oxidation of Cys130 and Cys174 in its α subunit, which interferes with the interaction between AMPK and AMPK kinases (AMPKK). Reduction of Cys130/Cys174 is essential for activation of AMPK during energy starvation. Thioredoxin1 (Trx1), an important reducing enzyme that cleaves disulfides in proteins, prevents AMPK oxidation, serving as an essential cofactor for AMPK activation. High-fat diet consumption downregulates Trx1 and induces AMPK oxidation, which enhances cardiomyocyte death during myocardial ischemia. Thus, Trx1 modulates activation of the cardioprotective AMPK pathway during ischemia, functionally linking oxidative stress and metabolism in the heart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox implications of AMPK-mediated signal transduction beyond energetic clues.

Since the discovery of AMP-dependent protein kinase (AMPK), its fundamental role in regulating metabolic pathways and the molecular mechanism underlying the regulation of its activity by adenine nucleotides has been widely studied. AMPK is not only an energy-responsive enzyme, but it also senses redox signals. This review aims at recapitulating the recent lines of evidence that demonstrate the ...

متن کامل

Energy-dependent modulation of glucagon-like signaling in Drosophila via the AMP-activated protein kinase.

Adipokinetic hormone (AKH) is the equivalent of mammalian glucagon, as it is the primary insect hormone that causes energy mobilization. In Drosophila, current knowledge of the mechanisms regulating AKH signaling is limited. Here, we report that AMP-activated protein kinase (AMPK) is critical for normal AKH secretion during periods of metabolic challenges. Reduction of AMPK in AKH cells causes ...

متن کامل

Altered Metabolism and Persistent Starvation Behaviors Caused by Reduced AMPK Function in Drosophila

Organisms must utilize multiple mechanisms to maintain energetic homeostasis in the face of limited nutrient availability. One mechanism involves activation of the heterotrimeric AMP-activated protein kinase (AMPK), a cell-autonomous sensor to energetic changes regulated by ATP to AMP ratios. We examined the phenotypic consequences of reduced AMPK function, both through RNAi knockdown of the ga...

متن کامل

اثر ضددیابتی عصاره زردچوبه از مسیر سلولی غیروابسته به انسولین AMPK

Introduction: Blood glucose is high in diabetic patients. It is taken from blood by two separate pathways: Insulin-dependent pathway of phosphoinositide 3 kinase (PI3K) and insulin-independent pathway AMPK (AMP-Activated protein kinase). The first pathway is impaired in type 2 diabetic patients, but the second pathway is active. On the other hand, curcuma longa extract containing a high percent...

متن کامل

KINETICS AND MECHANISM OF GRAFT POLYMERIZATION OF ACRYLONITRILE ONTO STARCH INITIATED WITH POTASSIUM PERSULFATE

A new potassium persulfate redox system has been investigated for the graft polymerization of vinyl monomers. In this study potassium persulfate system was used for initiation the polymerization. Graft polymerization of acrylonitrile (AN) onto starch (Sta) was carried out in aqueous solution using potassium persulfate (I) redox system. It was found that the percentage of grafting and rate of gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell metabolism

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2014